Computation in Chemistry: Representative Software and Resources

Eman M. Hassan, Yasser Fakri Mustafa, Marwan M. Merkhan

Volume 6, Issue 4 2022

Page: 1-22

Abstract

The use of modern computer software in the teaching of chemistry creates the basis for the increased interest of students and researchers in chemistry and the transfer and consolidation of knowledge. A chemical computer program is a program used to draw simple and complex chemical compounds as well as perform calculations of complex chemical equations and processes, making it possible to biologically interpret complex systems. This review covers common and mostly free applications that can be used to learn chemistry and to serve as a reference or tool for searching, identifying, and displaying the parameters of various materials. In addition, structured interpretation approaches and programs designed to aid in the description of unknown compounds are analyzed and discussed in this work.

Back Download



References

  • Julboev, T. A. et al. Teaching chemistry computer software to students of chemistry in pedagogical higher education institutions. European Journal of Research and Reflection in Educational Sciences 9, 2021 (2021).
  • Liao, C., Sitzmann, M., Pugliese, A. & Nicklaus, M. C. Software and resources for computational medicinal chemistry. Future Medicinal Chemistry vol. 3 1057–1085 (2011).
  • Libman, D. & Huang, L. Chemistry on the Go: Review of Chemistry Apps on Smartphones. Journal of Chemical Education 90, 320–325 (2013).
  • Kaushik, M. A review of Innovative Chemical Drawing and Spectra Prediction Computer Software. Mediterranean Journal of Chemistry 3, 759–766 (2014).
  • T, A. L. Drawing Software in Chemistry : Free / Open Source ( Foss ), Freeware- A Short Review. 9, 2319–2321 (2020).
  • Hofmann, A., Coster, M. J. & Taylor, P. Disseminating a Free, Practical Java Tool To Interactively Generate and Edit 2D Chemical Structures. Journal of Chemical Education 96, 1262–1267 (2019).
  • Tool, D., Evolution, T., Solution, C. & Communication, C. Beyond a Drawing Tool : The Evolution of a Comprehensive , Chemically-Intelligent Solution for Chemistry Communication How Innovative Software Can Empower Today ’ s Chemists to Search , Reuse , and Report Their Data Efficiently and Seamlessly.
  • Marpaung, D. N., Siregar, L. F. & Pongkendek, J. J. Effect of using chemsketch on teaching molecular shape of hydrocarbon to increase student’s achievement. Journal of Physics: Conference Series 1569, 042101 (2020).
  • Marpaung, D. N., Pongkendek, J. J., Azzajjad, M. F. & Sukirno, S. Analysis of Student Motivation using Chemsketch on Hydrocarbon Topic in SMA Negeri 2 Merauke. Journal of Applied Science, Engineering, Technology, and Education 3, 69–73 (2021).
  • ]Catur, G., Prabowo, W. & Utami, G. N. Prosiding Seminar Nasional Sains Penggunaan Chem Sketch untuk Meningkatkan Motivasi Belajar Peserta didik. Galuh Catur Wisnu Prabowo & Gamilla Nuri Utami/Penggunaan Chem Sketch untuk 1, 234–240 (2020).
  • Young, D. C. A practical guide for applying techniques to real-world problems. Comput. Chem. A vol. 9 (2001).
  • Weber, M. Some Safety Aspects on the Design of Sparger Systems for the. Process Safety Progress 25, 326–330 (2006).
  • Bigelow, N. & Johnson, L. Chemical Reactivity Worksheet. Choice Reviews Online 50, 50-2665-50–2665 (2013).
  • Dave Gorman, a Jim Farr, b Rob Bellair, c Wade Freeman, d Dave Frurip, a Al Hielscher, E. & Harold Johnstone, f Myriam Linke, g Pat Murphy, a Min Sheng, a Klaas van Gelder, g and D. V. Enhanced NOAA Chemical Reactivity Worksheet for Determining Chemical Compatibility. American Institute of Chemical Engineers 33, 1 (2014).
  • Healey, M. Software packages. Microelectronics Reliability 19, 549–554 (1979).
  • VCCLAB. Virtual Computational Chemistry Laboratory alogps 2.1. System 1–7 (2005).
  • Mahmood Aljamali, N., Abbas Aziz Alnomani, D. & Alhar, D. A. Review on Computational Biology and Computational Chemistry Applications. International Journal of Cheminformatics Research 7, 1 (2021).
  • Venanzi, C. A. Reviews in Computational Chemistry, Volume 8. Journal of Molecular Graphics 14, 243 (1996).
  • Yang, X., Wang, S. & Ma, X. Application of microwave technique in the preparation of catalyst. Chemistry Bulletin / Huaxue Tongbao 67, 641–647 (2004).
  • Willems, H., De Cesco, S. & Svensson, F. Computational Chemistry on a Budget: Supporting Drug Discovery with Limited Resources. Journal of Medicinal Chemistry 63, 10158–10169 (2020).
  • González-Díaz, H. et al. QSAR for RNases and theoretic-experimental study of molecular diversity on peptide mass fingerprints of a new Leishmania infantum protein. Molecular Diversity 14, 349–369 (2010).
  • Shekfeh, S. et al. A Multi-step Virtual Screening Protocol for the Identification of Novel Non-acidic Microsomal Prostaglandin E 2 Synthase-1 (mPGES-1) Inhibitors. ChemMedChem 14, 273–281 (2019).
  • Lazarova, M. Virtual Screening – Models, Methods and Software Systems. International Scientific Conference Computer Science 55-60., (2008).
  • Mustafa, Y. F. Synthesis, characterization, and biomedical assessment of novel bisimidazole–coumarin conjugates. (2021) doi:10.1007/s13204-021-01872-x.
  • Murugan, N. A. et al. A Review on Parallel Virtual Screening Softwares for High-Performance Computers. Pharmaceuticals 15, 63 (2022).
  • Helgren, T. R. & Hagen, T. J. Demonstration of AutoDock as an Educational Tool for Drug Discovery. Journal of Chemical Education 94, 345–349 (2017).
  • Pacheco, A. B. & Hpc, L. S. U. Introduction to AutoDock and AutoDock Tools. international for computation and tecnology vol. 2/29 (2012).
  • Houston, D. R. & Walkinshaw, M. D. Consensus docking: Improving the reliability of docking in a virtual screening context. Journal of Chemical Information and Modeling 53, 384–390 (2013).
  • Cuzzolin, A., Sturlese, M., Malvacio, I., Ciancetta, A. & Moro, S. DockBench: An integrated informatic platform bridging the gap between the robust validation of docking protocols and virtual screening simulations. Molecules 20, 9977–9993 (2015).
  • Seeliger, D. & De Groot, B. L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design 24, 417–422 (2010).
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling 61, 3891– 3898 (2021).
  • Daina, A. & Zoete, V. Application of the swissdrugdesign online resources in virtual screening. International Journal of Molecular Sciences vol. 20 4612 (2019).
  • Wang, H. Supporting Information Supporting Information. Aldenderfer, Mark S., Craig, Nathan M., Speakman, Robert Jeff, and Popelka-Filcoff, Rachel S. vol. 2 (1997).
  • Daina, A., Michielin, O. & Zoete, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research 47, W357–W364 (2019).
  • Daina, A., Michielin, O. & Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Scientific Reports 7, 1–13 (2017).
  • Zoete, V., Daina, A., Bovigny, C. & Michielin, O. SwissSimilarity: A Web Tool for Low to Ultra High Throughput Ligand-Based Virtual Screening. Journal of Chemical Information and Modeling 56, 1399–1404 (2016).
  • Bragina, M. E., Daina, A., Perez, M. A. S., Michielin, O. & Zoete, V. The SwissSimilarity 2021 Web Tool: Novel Chemical Libraries and Additional Methods for an Enhanced Ligand-Based Virtual Screening Experience. International Journal of Molecular Sciences 23, (2022).
  • Awadelkareem, A. M. et al. Phytochemical and In Silico ADME/Tox Analysis of Eruca sativa Extract with Antioxidant, Antibacterial and Anticancer Potential against Caco-2 and HCT-116 Colorectal Carcinoma Cell Lines. Molecules 27, 1409 (2022).
  • Tharik, A. M. S. & Meyyanathan, S. N. Swiss ADME predictions for anti cancer drug molecules prior In Vitro In Vivo Correlations ( IVIVC ). 17, (2021).
  • Wirth, M., Zoete, V., Michielin, O. & Sauer, W. H. B. SwissBioisostere: A database of molecular replacements for ligand design. Nucleic Acids Research 41, 1137–1143 (2013).
  • Cuozzo, A., Daina, A., Perez, M. A. S., Michielin, O. & Zoete, V. SwissBioisostere 2021: updated structural, bioactivity and physicochemical data delivered by a reshaped web interface. Nucleic Acids Research 50, D1382–D1390 (2022).
  • Zoete, V., Cuendet, M. A., Grosdidier, A. & Michielin, O. SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry 32, 2359–2368 (2011).
  • Grosdidier, A., Zoete, V. & Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research 39, (2011).

Looking for Paper Publication??

Come to us.